某学校对高一800名学生周末在家上网时间进行调查,抽取基中50个样本进行统计,发现上网的时间(小时)全部介于0至5之间.现将上网时间按如下方式分成五组:第一组,第二组,第三组,第四组,第五组,下图是按上述分组方法得到的频率分布直方图.(1)求该样本中上网时间在范围内的人数;(2)请估计本年级800名学生中上网时间在范围内的人数;(3)若该样本中第三组只有两名女生,现从第三组中抽两名同学进行座谈,求抽到的两名同学恰好是一名男生和一名女生的概率.
(本小题满分13分)已知函数,其中为常数,且.(1)若曲线在点处的切线与直线垂直,求的值;(2)若函数在区间上的最小值为,求的值.
(本大题13分)如图,已知椭圆,点B是其下顶点,过点B的直线交椭圆C于另一点A(A点在轴下方),且线段AB的中点E在直线上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A、B的动点,且直线AP,BP分别交直线于点M、N,证明:OM·ON为定值.
数列,,满足:,,.(1)若数列是等差数列,求证:数列是等差数列;(2)若数列,都是等差数列,求证:数列从第二项起为等差数列;(3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
(本小题满分12分)如图是图的三视图,三棱锥中,,分别是棱,的中点.(1)求证:平面;(2)求三棱锥的体积.
【原创】(本小题满分12分)已知在中,内角的对边分别是,且.求角;若为的平分线,在边上,请用正弦定理证明:.