已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.(1)求满足an+1=|bn|的所有正整数n的集合;(2)若n≠16,求数列的最大值和最小值;(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
(本小题共12分)已知向量,,函数. (Ⅰ)求函数的最小正周期和最大值; (Ⅱ)求函数在区间上的最大值和最小值.
已知函数 (1)若函数在上为增函数,求实数的取值范围 (2)当时,求在上的最大值和最小值 (3)求证:对任意大于1的正整数,恒成立
已知函数f(x)=,若数列,满足,,, (1)求的关系,并求数列的通项公式; (2)记, 若恒成立.求的最小值.
设直线与抛物线交于不同两点A、B,F为抛物线的焦点。 (1)求的重心G的轨迹方程; (2)如果的外接圆的方程。
如图一,平面四边形关于直线对称,。 把沿折起(如图二),使二面角的余弦值等于。对于图二, (Ⅰ)求; (Ⅱ)证明:平面; (Ⅲ)求直线与平面所成角的正弦值。