已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.(1)求满足an+1=|bn|的所有正整数n的集合;(2)若n≠16,求数列的最大值和最小值;(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (Ⅰ)证明:BC1∥平面A1CD; (Ⅱ)求二面角D-A1C-E的正弦值.
在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC. (Ⅰ)求A; (Ⅱ)若a=2,△ABC的面积为2,求b+c.
设正有理数x是的一个近似值,令. (Ⅰ)若; (Ⅱ)比较y与x哪一个更接近于,请说明理由.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线与圆C的交点为O,P,与直线的交点为Q,求线段PQ的长.
如图,、、是圆上三点,是的角平分线,交圆于,过作圆的切线交的 延长线于. (Ⅰ)求证:; (Ⅱ)求证:.