已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=-t2+8t(其中0≤t≤2,t为常数),若直线l1,l2与函数f(x)的图象以及l1、l2、y轴与函数f(x)的图象所围成的封闭图形(阴影部分)如图所示.(1)求a、b、c的值;(2)求阴影面积S关于t的函数S(t)的解析式.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分. 已知椭圆,常数、,且. (1)当时,过椭圆左焦点的直线交椭圆于点,与轴交于点,若,求直线的斜率; (2)过原点且斜率分别为和()的两条直线与椭圆的交点为(按逆时针顺序排列,且点位于第一象限内),试用表示四边形的面积; (3)求的最大值.
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分6分. 已知数列满足,,是数列的前项和,且(). (1)求实数的值; (2)求数列的通项公式;(3)对于数列,若存在常数M,使(),且,则M叫做数列的“上渐近值”. 设(),为数列的前项和,求数列的上渐近值.
(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分. 已知函数(,、是常数,且),对定义域内任意(、且),恒有成立. (1)求函数的解析式,并写出函数的定义域; (2)求的取值范围,使得.
本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知△的周长为,且. (1)求边长的值; (2)若(结果用反三角函数值表示).
本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知长方体,,点M是棱的中点. (1)试用反证法证明直线是异面直线; (2)求直线所成的角(结果用反三角函数值表示).