(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.已知椭圆,常数、,且.(1)当时,过椭圆左焦点的直线交椭圆于点,与轴交于点,若,求直线的斜率;(2)过原点且斜率分别为和()的两条直线与椭圆的交点为(按逆时针顺序排列,且点位于第一象限内),试用表示四边形的面积;(3)求的最大值.
(本小题满分14分) 已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项。 (Ⅰ)求数列{an}的通项公式; (Ⅱ)若,,当时,恒成立,试求m的取值范围。
、(本小题满分14分) 已知函数 (Ⅰ)求的最大值及此时x的值; (Ⅱ)求的值。
(本小题满分15分) 已知,,直线与函数、的图象都相切,且与函数的图象的切点的横坐标为. (Ⅰ)求直线的方程及的值; (Ⅱ)若(其中是的导函数),求函数的最大值; (Ⅲ)当时,求证:.
(本小题满分15分) 在等比数列{an}中,首项为,公比为,表示其前n项和. (I)记=A,= B,= C,证明A,B,C成等比数列; (II)若,,记数列的前n项和为,当n取何值时,有最小值.
(本小题满分14分) 已知二次函数为偶函数,函数的图象与直线y=x相切.[] (I)求的解析式 (II)若函数上是单调减函数,求k的取值范围;