如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是 ,菱形ABCD的面积是 ;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由,若变化,请探究OE、OF之间的数量关系,并说明理由.
如图,点A在∠O的一边OA上.按要求画图并填空: (1)过点A画直线AB ⊥OA,与∠O的另一边相交于点B; (2)过点A画OB的垂线段AC,垂足为点C; (3)过点C画直线CD∥OA ,交直线AB于点D; (4)∠CDB=°; (5)如果OA=8,AB=6,OB=10,则点A到直线OB的距离为.
某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有两种型号的设备,其中每台的价格,月处理污水量如下表:
经调查:购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元. (1)求的值. (2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案. (3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.
已知:,,点在轴上,. (1)直接写出点的坐标; (2)若,求点的坐标.
解不等式组,并写出该不等式组的整数解.
解不等式,并把解集在数轴上表示出来.