解方程:.
(本小题10分)抛物线经过点O(0,0),A(4,0),B(2,2).(1)求该抛物线的解析式;(2)画出此抛物线的草图;(3)求证:△AOB是等腰直角三角形;(4)将△AOB绕点O按顺时针方向旋转135°得△,写出边的中点P的 坐标,试判定点P是否在此抛物线上,并说明理由.
(本小题8分)关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根
计算或化简:(本小题6分)
解下列方程(每题5分,共10分)(1) (2)(用配方法解)
如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.(1)求C1点的坐标;(2)求经过三点O、A、C1的抛物线的解析式;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解析式;(4)抛物线上是否存在一点M,使得.若存在,请求出点M的坐标;若不存在,请说明理由.