已知函数f(x)=ax3+|x-a|,aR.(1)若a=-1,求函数y=f(x) (x [0,+∞))的图象在x=1处的切线方程;(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;(3)当a>0时,若对于任意的x1 [a,a+2],都存在x2 [a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.
如图,在平面直角坐标系中,轴在地平面上,轴垂直于地面,轴、轴上的单位长度都为,某炮位于坐标原点处,炮弹发射后,其路径为抛物线的一部分,其中与炮弹的发射角有关且. (1)当时,求炮弹的射程; (2)对任意正数,求炮弹能击中的飞行物的高度的取值范围; (3)设一飞行物(忽略大小)的高度为,试求它的横坐标不超过多少时,炮弹可以击中它.(答案精确到,取)
在中,角所对的边分别为,已知. (1)当时, ①若,求; ②若,求的值; (2)当时,若,求面积最大值.
如图,已知过点的光线,经轴上一点反射后的射线过点. (1)求点的坐标; (2)若圆过点且与轴相切于点,求圆的方程.
如图,在正三棱柱中,分别为中点. (1)求证:平面; (2)求证:平面平面.
如图,已知点,是单位圆上一动点,且点是线段的中点. (1)若点在轴的正半轴上,求; (2)若,求点到直线的距离.