设函数f()=,且方程的两个根分别为1,4.(1)当=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求的取值范围.
设函数(),其中,将的最小值记为.(1)求的表达式;(2)当时,要使关于的方程有且仅有一个实根,求实数的取值范围.
已知向量,,函数(1)求函数的解析式;(2)当时,求的单调递增区间;(3)说明的图象可以由的图象经过怎样的变换而得到.
在平面直角坐标系中,已知向量,又点. (1)若,且为坐标原点),求向量; (2)若向量与向量共线,当,且取最大值4时,求.
已知三点,,.(1)证明:;(2)若点C使得四边形ABCD为矩形,求点C的坐标,并求该矩形对角线所夹的锐角的余弦值.
如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于,两点. (1)如果、两点的纵坐标分别为与,求和;(2)在⑴的条件下,求的值;(3)已知点,求函数的值域.