已知向量,,函数(1)求函数的解析式;(2)当时,求的单调递增区间;(3)说明的图象可以由的图象经过怎样的变换而得到.
(本小题满分12分) 在锐角中,内角对边的边长分别是,且, (Ⅰ)求角; (Ⅱ)若边, 的面积等于, 求边长和.
(本小题满分12分) 设数列为等差数列,前项和为,已知,, (Ⅰ)求的通项公式; (Ⅱ)若,求数列的前项和.
(本小题满分12分) 已知命题:关于的不等式的解集为空集;命题:函数为增函数,若命题为假命题,为真命题,求实数的取值范围.
本小题满分12分) 设函数若不等式的解集是,求不等式的解集.
(本小题满分14分) 已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为 (1)求椭圆的标准方程; (2)已知直线l与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由。