已知椭圆的两个焦点分别为,.点与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆的方程;(Ⅱ)已知点的坐标为,点的坐标为.过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,若 ,试求满足的关系式.
2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):
(I)试根据频率分布直方图估计这60人的平均月收入; (Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
如图,矩形,满足在上,在上,且∥∥,,,,沿、将矩形折起成为一个直三棱柱,使与、与重合后分别记为,在直三棱柱中,点分别为和的中点. (I)证明:∥平面; (Ⅱ)若二面角为直二面角,求的值.
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1). (I)求数列{an}的通项公式及的值; (Ⅱ)比较+++ +与Sn的大小.
已知向量,设函数.求的最小正周期与单调递增区间;在中,分别是角的对边,若,,求的最大值.
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率. (1)求椭圆的方程; (2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值; (3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.