甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为. 记甲击中目标的次数为,乙击中目标的次数为求的分布列;求和的数学期望.
设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1·Sn,n∈N*. (1)求a1,a2,并求数列{an}的通项公式; (2)求数列{nan}的前n项和.
等差数列{an}中,a7=4,a19=2a9. (1)求{an}的通项公式; (2)设bn=,求数列{bn}的前n项和Sn.
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0. (1)求数列{an}的通项公式; (2)若bn=2(an+),求数列{bn}的前n项和Sn.
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1. (1)求数列{an}的通项公式; (2)设数列{bn}满足++…+=1-,n∈N* ,求{bn}的前n项和Tn.
正项数列{an}满足-(2n-1)an-2n=0. (1)求数列{an}的通项公式an; (2)令bn=,求数列{bn}的前n项和Tn.