已知曲线C的参数方程是 ( θ为参数 ),以直角坐标系xoy的原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+ sinθ) = 4(Ⅰ)试求曲线C上任意点M到直线l的距离的最大值;(Ⅱ)设P是l上的一点,射线OP交曲线C于R点,又点Q在射线OP上,且满足|OP|·|OQ|=|OR|2,当点P在直线l上移动时,试求动点Q的轨迹.
已知圆,若椭圆的右顶点为圆的圆心,离心率为.(1)求椭圆C的方程;(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.
在四棱锥中,底面是正方形,与交于点底面,为的中点.(1)求证:平面;(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.
某班同学利用寒假进行社会实践,对年龄在的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图: (1)补全频率分布直方图,并求的值;(2)从年龄在的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在的概率.
如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.(1) 求证:平面平面;(2) 求四棱锥的体积.
已知二次函数R,若是从区间中随机抽取的一个数,是从区间中随机抽取的一个数,求方程没有实数根的概率.