在四棱锥中,底面是正方形,与交于点底面,为的中点.(1)求证:平面;(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.
如图,直四棱柱底面直角梯形,∥,,是棱上一点,,,,,. (1)求异面直线与所成的角; (2)求证:平面.
已知函数常数)满足. (1)求出的值,并就常数的不同取值讨论函数奇偶性; (2)若在区间上单调递减,求的最小值; (3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.
阅读: 已知、,,求的最小值. 解法如下:, 当且仅当,即时取到等号, 则的最小值为. 应用上述解法,求解下列问题: (1)已知,,求的最小值; (2)已知,求函数的最小值; (3)已知正数、、,, 求证:.
已知数列和的通项公式分别为,.将与中的公共项按照从小到大的顺序排列构成一个新数列记为. (1)试写出,,,的值,并由此归纳数列的通项公式; (2)证明你在(1)所猜想的结论.
一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检. 假设这批产品的合格率为80%,且各件产品是否为合格品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为元,求的概率分布及数学期望.