已知函数,点.(1)若,函数在上既能取到极大值,又能取到极小值,求的取值范围;(2)当时,对任意的恒成立,求的取值范围;(3)若,函数在和处取得极值,且,是坐标原点,证明:直线与直线不可能垂直.
(本小题满分14分)已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且直线交椭圆于两点. (1)求椭圆的方程; (2)若直线交轴于点,且,当变化时, 的值是否为定值?若是,求出这个定值,若不是,说明由.
(本小题满分13分) 已知数列的前项和是,且. (1)求数列的通项公式; (2)设,求适合方程的正整数的值.
(本小题满分13分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (1)求证:; (2)求证:平面; (3)求二面角的余弦值.
(本小题满分13分)已知点,,点为坐标原点,点在第二象限,且,记. (1)求的值; (2)若,求的面积.
(本小题满分13分)某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2),如下表所示:
(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率 (Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.