(本小题满分14分)已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且直线交椭圆于两点.(1)求椭圆的方程;(2)若直线交轴于点,且,当变化时, 的值是否为定值?若是,求出这个定值,若不是,说明由.
(本小题10分) 双曲线与椭圆有相同焦点,且经过点,求双曲线的方程
(本小题10分) 当m取何值时,直线L:y=x+m与椭圆9x2+16y2=144相切、相交、相离.
. ( 本小题10分)代表实数,讨论方程所表示的曲线.
(本小题8分) 求双曲线的实轴和虚轴的长、顶点和焦点坐标、离心率、渐近线方程:
设a为实数,设函数的最大值为g(a)。 (Ⅰ)设t=,求t的取值范围,并把f(x)表示为t的函数m(t) (Ⅱ)求g(a) (Ⅲ)试求满足的所有实数a