如图所示茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.(1)若甲、乙两个小组的数学平均成绩相同,求a的值;(2)求乙组平均成绩超过甲组平均成绩的概率;(3)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。
设且. (I)当时,求实数的取值范围; (II)当时,求的最小值.
已知函数f (x )=ax 3 + x2 + 2( a ≠ 0 ) . (Ⅰ) 试讨论函数f (x )的单调性; (Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
在等比数列中,,公比,且, 又是与的等比中项。设. (Ⅰ) 求数列的通项公式; (Ⅱ) 已知数列的前项和为,,求.
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分. 现从该箱中任取 ( 无放回 ) 3个球,记随机变量X为取出3球所得分数之和. (Ⅰ) 求X的分布列; (Ⅱ) 求X的数学期望E(X).