工厂有一段旧墙长m,现准备利用这段旧墙为一面,建造平面图形为矩形,面积为m2的厂房,工程条件是:(1)建1m新墙费用为a元;(2)修1 m旧墙费用是元;(3)拆去1 m旧墙,用所得材料建1m新墙费用为元,经过讨论有两种方案:①利用旧墙的一段(x<14)为矩形厂房一面的边长;②矩形厂房利用旧墙的一面,矩形边长x≥14。问:如何利用旧墙,即x为多少m时,建墙费用最省?①②两种方案哪种更好?
(本小题14分)已知二次函数满足:,,且该函数的最小值为1. ⑴ 求此二次函数的解析式; ⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
(本小题13分) 有一批单放机原价为每台80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一台减4元,买两台每台减8元,买三台每台减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一台单放机,问选择哪个商场购买比较划算?
(本小题12分)已知函数, (1)判断函数在区间上的单调性; (2)求函数在区间是区间[2,6]上的最大值和最小值.
(本小题12分)已知函数是定义在上的偶函数,已知时,. (1)画出偶函数的图象; (2)根据图象,写出的单调区间;同时写出函数的值域.
(本小题12分)已知函数的定义域为集合A,的值域为B. (1)若,求A∩B (2) 若=R,求实数的取值范围。