已知椭圆过点,其焦距为.(Ⅰ)求椭圆的方程;(Ⅱ)已知椭圆具有如下性质:若椭圆的方程为,则椭圆在其上一点处的切线方程为,试运用该性质解决以下问题:(i)如图(1),点为在第一象限中的任意一点,过作的切线,分别与轴和轴的正半轴交于两点,求面积的最小值;(ii)如图(2),过椭圆上任意一点作的两条切线和,切点分别为.当点在椭圆上运动时,是否存在定圆恒与直线相切?若存在,求出圆的方程;若不存在,请说明理由.
(本小题满分13分,(1)小问6分,(2)小问7分)如图,在四棱锥中,底面为直角梯形,,,底面,且,、分别为、的中点.(1)求证:平面;(2)求证:.
(本小题满分13分,(1)小问7分,(2)小问6分)已知函数,(1)求函数在点处的切线方程;(2)求函数的单调递减区间.
已知椭圆的左右焦点分别为,为半焦距,(1)求椭圆离心率的取值范围;(2)设椭圆的短半轴长为,以为圆心,为半径作圆,圆与轴的右交点为,过点作倾斜角不为直线与椭圆相交于两点,若,求直线被圆截得的弦长的取值范围。
如图,在各棱长均为的三棱柱中,侧面底面,.(1)求侧棱与平面所成的角;(2)已知点满足,在直线上的点,满足,求二面角的余弦值。
已知动点到点的距离比它到直线的距离小1,记点的轨迹为.(1)求曲线的方程;(2)过点的直线交曲线于两点,若,求直线的方程