已知,若命题“ p且q”和“¬p”都为假,求的取值范围.
如图,正四棱柱中,底面边长为2,侧棱长为3,E为BC的中点,F、G分别为、上的点,且CF=2GD=2.求:(1)到面EFG的距离;(2)DA与面EFG所成的角的正弦值;(3)在直线上是否存在点P,使得DP//面EFG?,若存在,找出点P的位置,若不存在,试说明理由。
已知函数,其图像在点处的切线为.(1)求、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积;(2)求、直线及轴围成图形的面积.
已知函数.(Ⅰ)当时,求的极小值;(Ⅱ)若直线对任意的都不是曲线的切线,求的取值范围.
数列的前n项和为Sn ,且满足。(Ⅰ)计算;(Ⅱ)猜想通项公式,并用数学归纳法证明。
已知在的展开式中,第6项为常数项.(1)求n;(2)求含的项的系数;(3)求展开式中所有的有理项.