如图,在长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)如果AB=2,AE=,OE⊥EC1,求AA1的长.
(本小题满分12分) 从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。 (1)若抽取后又放回,抽3次,分别求恰2次为红球的概率及抽全三种颜色球的概率; (2)若抽取后不放回,求抽完红球所需次数不少于4次的概率。
(本小题满分10分) 在中,角、、的对边分别为、、,且边上的中线的长为 (I)求角的大小; (II)求的面积.
已知函数 (1)若函数的取值范围;(2)若对任意的时恒成立,求实数b的取值范围。
已知焦点在x轴上,离心率为的椭圆的一个顶点是抛物线的焦点,过椭圆右焦点F的直线l交椭圆于A、B两点,交y轴于点M,且 (1)求椭圆的方程; (2)证明:为定值。
已知等差数列的各项均为正数,是等比数列, (1)求数列的通项公式; (2)求证:都成立.