已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点. (1)求证;平面平面; (2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球. (1)求恰有两个黑球的概率; (2)记取出红球的个数为随机变量,求的分布列和数学期望.
(本小题满分12分)设的内角,,所对的边分别为,,,且. (1)求角的大小; (2)若,求的周长的取值范围.
已知函数. (1)当时,与在定义域上单调性相反,求的最小值。 (2)当时,求证:存在,使有三个不同的实数解,且对任意且都有.
(本小题满分13分)已知抛物线C的顶点为O(0,0),焦点为F(0,1). (1)求抛物线C的方程; (2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.