从某节能灯生产线上随机抽取100件产品进行寿命试验,按连续使用时间(单位:天)共分5组,得到频率分布直方图如图.(1)请根据频率分布直方图,估算样本数据的众数和中位数(中位数精确到0.01);(2)若将频率视为概率,从该生产线所生产的产品(数量很多)中随机抽取3个,用ξ表示连续使用寿命高于350天的产品件数,求ξ的分布列和期望.
设。(1)求的值; (2)归纳{}的通项公式,并用数学归纳法证明。
用红、黄、蓝、白、黑五种颜色在田字形的四个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用。(1)从中任选四种颜色涂色,有多少种不同的涂法?(2)按要求任意选色涂,共有多少种不同的涂法?
求证:(1); (2) +>+。
已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=,记动点P的轨迹为C.(1)求C的方程;(2)若A、B是曲线C上不同的两点,O是坐标原点,求的最小值.
如图,已知中心在原点,焦点在x轴上的椭圆经过点(,),且它的左焦点F1将长轴分成2∶1,F2是椭圆的右焦点.(1)求椭圆的标准方程;(2)设P是椭圆上不同于左右顶点的动点,延长F1P至Q,使Q、F2关于∠F1PF2的外角平分线l对称,求F2Q与l的交点M的轨迹方程.