已知函数的极小值为-8,其导函数的图象过点,如图所示(1)求的解析式(2)若对都有恒成立,求实数的m取值范围。
长方体中,E是BC的中点,M、N分别是AE、的中点,. (1) 求证:平面 (2)求异面直线AE与所成角的余弦值
某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命 (单位:小时)进行了统计,统计结果如下表所示:
(1)将各组的频率填入表中; (2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率; (3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率
如图所示的几何体中,已知平面平面,,且,,,求证:
甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率是. 求: (1)乙投球的命中率; (2)甲投球2次,至少命中1次的概率; (3)若甲、乙二人各投球2次,求两人共命中2次的概率
10分) 如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证: