如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60º,又PA⊥底面ABCD,AB=2PA,E为BC的中点. (1)求证:AD⊥PE; (2)求平面APE与平面PCD所成锐二面角的余弦值.
已知指数函数满足:g(2)=4,定义域为的函数是奇函数。(1)确定的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围
已知a为实数,函数f(x)=(x2+1)(x+a),若f′(-1)=0,求函数y=f(x)在上的最大值和最小值.
已知集合, (1)若,求实数的值;(2)若,求实数的取值范围。
已知复数满足: 求的值.
已知向量=(sin,1),=(cos,cos2)(1)若·=1,求cos(-x)的值;(2)记f(x)=·,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.