如图所示,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,SA⊥平面ABCD,且AD∥BC,AB⊥AD,BC=2AD=2,AB=AS=.(Ⅰ)求证:SB⊥BC;(Ⅱ)求点A到平面SBC的距离;(Ⅲ)求面SAB与面SCD所成二面角的大小.
如图 ,在直角梯形 A B C D 中, A D ∥ B C , ∠ B A D = π 2 , A B = B C = 1 , A D = 2 , 是 A D 的中点, O 是 A C 与 B E 的交点.将 △ A B E 沿 B E 折起到 △ A 1 B E 的位置,如图 .
(Ⅰ)证明: C D ⊥ 平面 A 1 O C ; (Ⅱ)若平面 A 1 B E ⊥ 平面 B C D E ,求平面 A 1 B C 与平面 A 1 C D 夹角的余弦值.
△ABC 的内角 A,B,C 所对的边分别为 a,b,c .向量 m ⇀ =(a, 3 b) 与 n ⇀ =(cosA,sinB) 平行. (Ⅰ)求 A ; (Ⅱ)若 a= 7 ,b=2 求 △ABC 的面积.
平面直角坐标系 xOy 中,已知椭圆 C : x2 a2 + y 2 b2 =1 a > b > 0 的离心率为 3 2 ,且点( 3 , 1 2 )在椭圆 C 上. (Ⅰ)求椭圆 C 的方程; (Ⅱ)设椭圆 E : x2 4 a2 + y2 4 b2 =1 , P 为椭圆 C 上任意一点,过点 P 的直线 y=kx+m 交椭圆 E 于 A,B 两点,射线 PO 交椭圆 E 于点 Q . (ⅰ)求 O Q O P 的值; (ⅱ)求 △ABQ 面积的最大值.
设函数 f ( x ) = ( x + a ) ln x , g ( x ) = x 2 e x . 已知曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线与直线 2 x - y = 0 平行. (Ⅰ)求 a 的值; (Ⅱ)是否存在自然数 k ,使得方程 f ( x ) = g ( x ) 在 ( k , k + 1 ) 内存在唯一的根?如果存在,求出 k ;如果不存在,请说明理由; (Ⅲ)设函数 m ( x ) = m i n { f ( x ) , g ( x ) } ( m i n { p , q } 表示, p , q 中的较小值),求 m ( x ) 的最大值.
已知数列 a n 是首项为正数的等差数列,数列 1 a n a n + 1 的前 n 项和为 n 2 n + 1 . (Ⅰ)求数列 a n 的通项公式; (Ⅱ)设 b n = a n + 1 ·2 a n ,求数列 b n 的前 n 项和 T n .