定义为个正数的“均倒数”.已知各项均为正数的数列的前项的“均倒数”为.(Ⅰ)求数列的通项公式;(Ⅱ)设,试求数列的前项和.
(本小题满分12分)在中,内角所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最值.
(本小题满分14分)现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为.(1)试写出,并找出与()的关系式;(2)求数列的通项公式;(3)证明:当时, .
(本小题满分13分)(1)若(),试求实数的范围;(2)设实数,函数,试求函数的值域。
(本小题满分12分)已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点).(1)数列的通项公式;(2)若,记,求证:.
(本小题满分12分)如图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下:(1)求二面角B-AC-D的大小;(2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。