如图,和都经过两点,是的切线,交于点,是的切线,交于点,求证:.
设函数(I)求的单调区间;(II)若函数无零点,求实数的取值范围.
设平面内两定点、,直线和相交于点,且它们的斜率之积为定值。(I)求动点的轨迹的方程;(II)设,过点作抛物线的切线交曲线于、两点,求的面积。
某项新技术进入试用阶段前必须对其中三项不同指标甲、乙、丙进行通过量化检测。假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为,指标甲、乙、丙检测合格分别记4分、2分、4分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。(Ⅰ)求该项技术量化得分不低于8分的概率;(Ⅱ)记该技术的三个指标中被检测合格的指标个数为随机变量,求的分布列与数学期望。
如图:C、D是以AB为直径的圆上两点,在线段上,且 ,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上.(I)求证平面ACD⊥平面BCD;(II)求证:AD//平面CEF.
已知函数(I)若,求sin2x的值;(II)求函数的最大值与单调递增区间.