在等比数列 中,, ,求和.
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(附:,,其中,为样本平均值)
设分别为椭圆的左、右焦点.(1)若椭圆上的点两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点P是(1)中所求得的椭圆上的动点,。
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示. (I)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图; (Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下: 甲 乙 (1)用茎叶图表示这两组数据; (2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?
已知,:,: . (I)若是的充分条件,求实数的取值范围; (Ⅱ)若,“或”为真命题,“且”为假命题,求实数的取值范围