已知等差数列{an}的前n项和为Sn,且满足Sn=n2﹣n.(1)求an;(2)设数列{bn}满足bn+1=2bn﹣an且b1=4,(i)证明:数列{bn﹣2n}是等比数列,并求{bn}的通项;(ii)当n≥2时,比较bn﹣1•bn+1与bn2的大小.
已知数列,,且满足. (1)求证数列是等差数列; (2)设,求数列的前n项和.
已知命题:“不等式对任意恒成立”,命题:“表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.
已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4, (1)求椭圆C的方程; (2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.
已知数列前n项和=(), 数列为等比数列,首项=2,公比为q(q>0)且满足,,为等比数列. (1)求数列,的通项公式; (2)设,记数列的前n项和为Tn,,求Tn。
如图,已知三棱锥的侧棱与底面垂直,,, M、N分别是的中点,点P在线段上,且, (1)证明:无论取何值,总有. (2)当时,求平面与平面所成锐二面角的余弦值.