)已知函数满足对一切都有,且,当时有.(1)求的值; (2)判断并证明函数在上的单调性;(3)解不等式:
为了降低能源损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)、求的值及的表达式; (2)、隔热层修建多厚时,总费用达到最小,并求最小值.
如图所示,在棱长为2的正方体中,、分别为、的中点.(1)求证:(1)、//平面; (2)、求证:; (3)、求三棱锥的体积.
已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(),且a⊥b. (1)、求tanα的值; (2)、求cos()的值.
设曲线 (1)若函数存调递减区间,求a的取值范围; (2)若过曲线C外的点A(1,0)作曲线C的切线恰有三条,求a,b满足的关系式
如图,设抛物线的准线与x轴交地F1,焦点为F2,以F1、F2为焦点,离心率的椭圆C2与抛物线C2在x轴上方的交点为P。 (1)当m=1时,求椭圆C2的方程; (2)延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动,当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值。