已知点(1,2)是函数的图象上一点,数列的前项和是.(1)求数列的通项公式;(2)若,求数列的前项和
(本小题满分10分)选修4-5:不等式选讲已知函数. (1)当时,求函数的定义域;(2)若关于的不等式的解集是,求的取值范围.
(本小题满分10分)选修4-1:几何证明选讲如图所示,已知与⊙相切,为切点,为割线,弦,、相交于点,为上一点,且·.(1)求证:;(2)求证:·=·.
(本小题满分12分)设定义在区间上的函数的图象为,是上的任意一点,为坐标原点,设向量=,,,当实数λ满足x="λ" x1+(1-λ) x2时,记向量=λ+(1-λ).定义“函数在区间上可在标准下线性近似”是指 “恒成立”,其中是一个确定的正数.(1)求证:三点共线;(2)设函数在区间[0,1]上可在标准下线性近似,求的取值范围;(3)求证:函数在区间上可在标准下线性近似.(参考数据:=2.718,)
(本小题满分12分) 如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点.(Ⅰ)试求椭圆的标准方程;(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.
(本小题满分12分)某建筑物的上半部分是多面体, 下半部分是长方体(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.(Ⅰ)求直线与平面所成角的正弦值;(Ⅱ)求二面角的余弦值;(Ⅲ)求该建筑物的体积.