(本小题满分12分) 如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点.(Ⅰ)试求椭圆的标准方程;(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.
在面积为1的△PMN中,tan∠M=,tan∠N=-2,建立适当坐标系,求出以MN为焦点且过P点的椭圆方程.
方程=1表示焦点在y轴上的椭圆,求实数m的取值范围.
已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.
椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点B与两个焦点F1、F2组成的三角形的周长是4+2,且∠F1BF2=,求椭圆的方程.
△ABC的两个顶点A、B的坐标分别是(-5,0)、(5,0),边AC、BC所在直线的斜率 之积为-,求顶点C的轨迹.