(本小题满分12分)设定义在区间上的函数的图象为,是上的任意一点,为坐标原点,设向量=,,,当实数λ满足x="λ" x1+(1-λ) x2时,记向量=λ+(1-λ).定义“函数在区间上可在标准下线性近似”是指 “恒成立”,其中是一个确定的正数.(1)求证:三点共线;(2)设函数在区间[0,1]上可在标准下线性近似,求的取值范围;(3)求证:函数在区间上可在标准下线性近似.(参考数据:=2.718,)
2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式 已知每日的利润,且当时,. (1)求的值; (2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图. 表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图) (1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图; (2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少; (3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
附:下面的临界值表供参考:
(参考公式:,其中)
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8. (1)设M是PC上的一点,证明:平面MBD⊥平面PAD; (2)求四棱锥P-ABCD的体积.
设向量=,=,为锐角. (1)若∥,求tanθ的值; (2)若·=,求sin+cos的值.
已知椭圆的左右焦点分别为、,离心率,直线经过左焦点. (1)求椭圆的方程; (2)若为椭圆上的点,求的范围.