已知椭圆的左右焦点分别为、,离心率,直线经过左焦点.(1)求椭圆的方程;(2)若为椭圆上的点,求的范围.
已知抛物线C的方程为,A,B是抛物线C上的两点,直线AB过点M。(Ⅰ)设是抛物线上任意一点,求的最小值; (Ⅱ)求向量与向量的夹角(O是坐标原点);(Ⅲ)在轴上是否存在异于M的一点N,直线AN与抛物线的另一个交点为D,而直线DB与轴交于点E,且有?若存在,求出N点坐标;若不存在,说明理由.
(本小题满分13分)设不等式组确定的平面区域为U,确定的平面区域为V.(Ⅰ)定义坐标为整数的点为“整点”.在区域U内任取3个整点,求这些整点中恰有2个整点在区域V的概率;(Ⅱ)在区域U内任取3个点,记此3个点在区域V的个数为X,求X的概率分布列及其数学期望.
(本小题满分13分)如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.
设函数,,(Ⅰ)如果函数的图像是由函数的图像上各点的横坐标伸长为原来的2倍,再把所得图像向左平移得到,求函数解析式;(Ⅱ)如果,求在区间上的值域.
已知函数.(1)若函数在区间(其中)上存在极值,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围.