2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式已知每日的利润,且当时,.(1)求的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
已知函数. (Ⅰ)当时,求的极小值; (Ⅱ)若直线对任意的都不是曲线的切线,求的取值范围.
数列的前n项和为Sn ,且满足。 (Ⅰ)计算; (Ⅱ)猜想通项公式,并用数学归纳法证明。
已知在的展开式中,第6项为常数项. (1)求n; (2)求含的项的系数; (3)求展开式中所有的有理项.
已知 是数列的前项和,且 (1)求数列的通项公式; (2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(n为正整数),求数列的变号数; (3)记数列的前的和为,若对恒成立,求正整数的最小值。
在锐角三角形中,分别是角的对边,且 (1)求角; (2)若,,求的面积。 (3)求的取值范围。