如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求∠CBD的度数.
已知与成反比例,且当时,(1)求与之间的函数关系式;(2)求当时,的值。
如图,AB是⊙O的直径,且AD∥OC,若弧AD的度数为80°,求弧CD的度数。
如图1所示,已知在△ABC和△DEF中, ,.(1)试说明:△ABC≌△FED的理由;(2)若图形经过平移和旋转后得到如图2,若,试求∠DHB的度数;(3)若将△ABC继续绕点D旋转后得到图3,此时D、B、F三点在同一条直线上,若DF:FB=3:2,连结EB,已知△ABD的周长是12,且AB-AD=1,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请说明理由。
某山区有若干名中、小学生因贫困失学需要捐款,某中学七八年级学生举行“献爱心”募捐活动。七、八年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:
问每位贫困中学生和小学生每年的生活费用分别需要多少元?
请你依据下面的寻宝游戏规则,探究“寻宝游戏”的奥秘。(1)用树状图或列表的方式表示出所有可能的寻宝情况(2)求在寻宝游戏中胜出的概率。