已知函数 的定义域是 , 是 的导函数,且 在上恒成立(Ⅰ)求函数 的单调区间。(Ⅱ)若函数 ,求实数a的取值范围(Ⅲ)设 是 的零点 , ,求证: .
已知正项数列的前n项和为,且 (1)求、; (2)求证:数列是等差数列; (3)令,问数列的前多少项的和最小?最小值是多少?
在锐角△ABC中,内角A,B,C的对边分别为且. (1)求角A的大小; (2) 若求△ABC的面积.
已知点(0,),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点. (Ⅰ)求的方程; (Ⅱ)设过点的直线与相交于两点,当的面积最大时,求的方程.
已知 为坐标原点, 为函数 图像上一点,记直线 的斜率 . (Ⅰ) 若函数 在区间 上存在极值,求实数 的取值范围; (Ⅱ) 当 时,不等式 恒成立,求实数 的取值范围.
如图,中,两点分别是线段的中点,现将沿折成直二面角。 (Ⅰ) 求证:; (Ⅱ)求直线与平面所成角的正切值.