如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.
甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y). (1)请用树状图或列表法表示点A的坐标的各种可能情况; (2)求点A落在的概率.
如图,在⊿ABC中,AB=BC,点D在AB的延长线上。 (1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法)①作∠CBD的平分线BM ②作边BC上的中线AE,并延长AE交BM于点F. (2)在(1)的基础上,连接CF,判断四边形ABFC的形状,并说明理由。
先化简,再求值:,其中是不等式组的整数解。
如图,在四边形ABCD中,点E.F.G.H分别为四边形ABCD各边的中点,顺次连接点E.F.G.H, (1)试判断四边形EFGH的形状,并证明你的结论. (2)如果四边形ABCD是矩形,则四边形EFGH是什么形状?并说明理由.
如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF. (1)求证:AE=CF; (2)连结DB交CF于点O,延长OB至点G,使OG=OD,连结EG、FG,判断四边形DEGF是否是菱形,并说明理由.