某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为,按交通法规定:这段公路车速限制在(单位:)之间.假设目前油价为(单位:元),汽车的耗油率为(单位:), 其中(单位:)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为元,不考虑其它费用,这次租车的总费用最少是多少?此时的车速是多少?(注:租车总费用=耗油费+司机的工资)
已知函数的图象在点P(1,0)处的切线与直线平行(1)求常数,的值;(2)求函数在区间上最小值和最大值(m>0)。
已知曲线C方程:(1)当m为何值时,此方程表示圆;(2)若m=0,是否存在过点P(0、2)的直线与曲线C交于A、B两点,且,若存在,求直线的方程;若不存在,说明理由。
已知三棱锥A-PBC ∠ACB=90°AB=20 BC=4 PAPC,D为AB中点且△PDB为正三角形(1)求证:BC⊥平面PAC;(2)求三棱锥D-PBC的体积。
数列前n项和为且 (1)求的值;(2)求的通项公式;(3)求值;
A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若且(1)求角A的大小;(2)若,三角形面积,求的值。