已知函数的图象在点P(1,0)处的切线与直线平行(1)求常数,的值;(2)求函数在区间上最小值和最大值(m>0)。
(本小题满分12分)如图,ABCD和ABEF都是正方形,,且.证明:平面BCE.
(本小题满分12分)如图,在空间四边形PABC中,,,.求证:
(本小题满分10分)已知边长为6的正方形ABCD所在平面外一点P,PD^平面ABCD,PD=8,求PB与平面ABCD所成的角的大小;
已知数列 a n 和 b n 满足: a 1 = λ , a n + 1 = 2 3 a n + n - 4 , b n = ( - 1 ) n ( a n - 3 n + 21 ) ,其中 λ 为实数, n 为正整数。
(Ⅰ)证明:对任意的实数 λ ,数列 a n 不是等比数列;
(Ⅱ)设 S n 为数列 b n 的前 n 项和,是否存在实数 λ ,使得对任意正整数 n ,都有 S n > - 12 ?若存在,求 λ 的取值范围;若不存在,说明理由.
已知双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 的两个焦点为 F : ( - 2 , 0 ) , F : ( 2 , 0 ) 点 P ( 3 , 7 ) 的曲线 C 上. (Ⅰ)求双曲线 C 的方程; (Ⅱ)记 O 为坐标原点,过点 Q ( 0 , 2 ) 的直线 l 与双曲线 C 相交于不同的两点 E , F ,若 △ O E F 的面积为 2 2 求直线 l 的方程