如图,顺达驾校拟在长为400m的道路OP的一侧修建一条训练道路,训练道路的前一部分为曲线段OSM,该曲线段为函数的图象,且图象的最高点为,训练道路的后一部分为折线段MNP,为保证训练安全,限定.(I)求曲线段OSM对应函数的解析式;(II)应如何设计,才能使折线段训练道路MNP最长?最长为多少?
(本小题满分13分) 已知数列{an}中,a2=p(p是不等于0的常数),Sn为数列{an}的前n项和,若对任意的正整数n都有Sn=. (1)证明:数列{an}为等差数列;(2)记bn=+,求数列{bn}的前n项和Tn; (3)记cn=Tn-2n,是否存在正整数N,使得当n>N时,恒有cn∈(,3),若存在,请证明你的结论,并给出一个具体的N值;若不存在,请说明理由.
(本小题满分12分). 已知函数在上是减函数,在上是增函数,函数在上有三个零点,且1是其中一个零点. (1)求的值; (2)求的取值范围;
(本小题满分12分)如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC. (1)证明:平面ACD平面; (2)若,,,试求该简单组合体的体积V.
(本小题满分12分) 某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组……第五组.下图是按上述分组方法得到的频率分布直方图. (I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (II)设、表示该班某两位同学的百米测试成绩,且已知. 求事件“”的概率.
(本小题满分12分) 已知的三个内角A、B、C所对的边分别为,向量,且. (1)求角A的大小;(2)若,试判断取得最大值时形状.