(本小题满分12分)某项选拔共有三轮考核,每轮设有一问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、轮的问题的概率分别为且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选择中回答问题的个数记为,求随机变量的分布列与数学期望.(注:本小题结果可用分数表示)
设函数上两点,若,且P点的横坐标为.(Ⅰ)求P点的纵坐标;(Ⅱ)若求;(Ⅲ)记为数列的前n项和,若对一切都成立,试求a的取值范围.
设函数。(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;(Ⅱ)若函数在区间内不单调,求实数的取值范围。
已知=(cosα,sinα),=(cosβ,sinβ),与之间有关系|k+|=|-k|,其中k>0,(Ⅰ)用k表示;(Ⅱ)求·的最小值,并求此时与的夹角的大小。
已知函数,其中为常数.(1)当时,求函数的单调递增区间;(2)若任取,求函数在上是增函数的概率.
在△ABC中,内角A,B,C所对边长分别为,,,.(1)求的最大值及的取值范围;(2)求函数的最大值和最小值.