已知二次函数g(x)对任意x∈R都满足g(x-1)+g(1-x)=x2-2x-1且g(1)=-1,设函数f(x)=g(x+)+ m +(m∈R,x>0).(1)求g(x)的表达式;(2)若存在x∈(0,+∞),使f(x)≤0成立,求实数m的取值范围;(3)设1<m≤e,H(x)=f(x)-(m+1)x,求证:对于任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.
光线从点射出,到轴上的点后,被轴反射,这时反射光线恰好过点,求所在直线的方程及点的坐标.
若非零函数对任意实数均有,且当时 (1)求证:; (2)求证:为R上的减函数; (3)当时, 对恒有,求实数的取值范围.
已知函数,且. (1)判断的奇偶性并说明理由; (2)判断在区间上的单调性,并证明你的结论; (3)若在区间上,不等式恒成立,试确定实数的取值范围.
湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数. (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域); (2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.
已知函数 (1)求函数的定义域和值域; (2)若有最小值-2,求的值.