如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD⊥平面POA;(2)记三棱锥P-ABD的体积为V1,四棱锥P-BDEF的体积为V2,求当PB取得最小值时V1∶V2的值.
已知等差数列和公比为的等比数列满足:,,. (1)求数列, 的通项公式; (2)求数列的前项和为.
已知函数(为常数),且在点处的切线平行于轴. (1)求实数的值; (2)求函数的单调区间.
某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.
(1)用茎叶图表示两组的生产情况; (2)求乙组员工生产件数的平均数和方差; (3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率. (注:方差,其中为x1,x2, ,xn的平均数)
已知向量,定义函数 (1)求函数的表达式,并指出其最大最小值; (2)在锐角中,角A,B,C的对边分别为a,b,c,且求的面积S。
设为非负实数,满足,证明:.