(本小题满分12分)已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上.(1)求椭圆C的方程;(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.
已知直线的方程为,求满足下列条件的直线的方程: (1)与平行且过点;(2)与垂直且过点;
若非零函数对任意实数均有,且当时,. (1)求证: (2)求证:为减函数; (3)当时,解不等式
已知圆方程. (1)若圆与直线相交于M,N两点,且(为坐标原点)求的值; (2)在(1)的条件下,求以为直径的圆的方程.
在正方体中,、为棱、的中点. (1)求证:∥平面; (2)求证:平面⊥平面
直线l经过点,且和圆C:相交,截得弦长为,求l的方程.