(本小题满分14分)设函数(e=2.718 28……是自然对数的底数).(1)判断的单调性;(2)当在(0,+∞)上恒成立时,求a的取值范围;(3)证明:当(0,+∞)时,.
已知函数(其中), . (1)若命题是假命题,求的取值范围; (2)若命题,命题满足或为真命题,若是的必要不充分条件,求的取值范围.
在中,分别为内角的对边,且. (1)求角的大小; (2)设函数,当取最大值时,判断的形状.
选修4-4:坐标系与参数方程 在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线和曲线(为参数). (1)将与的方程化为普通方程; (2)判定直线l与曲线 是否相交,若相交求出被截得的弦长.
已知函数f(x)=xln x,g(x)=(-x2+ax-3)ex(a为实数). (1)当a=5时,求函数y=g(x)在x=1处的切线方程; (2)求f(x)在区间(t>0)上的最小值.
已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4x的焦点,且椭圆E的离心率是. (1)求椭圆E的方程; (2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是,求直线AB的方程.