已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足+=t (O为坐标原点),当|-|<时,求实数t的取值范围.
在1,2,---,7这7个自然数中,任取个不同的数. (1)求这个数中至少有个是偶数的概率; (2)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是).求随机变量的分布列及其数学期望.
选修4-4:坐标系与参数方程 已知曲线的参数方程为,曲线的极坐标方程为. (1)将曲线的参数方程化为普通方程; (2)曲线与曲线有无公共点?试说明理由.
选修4-2:矩阵与变换 若点A(-2,2)在矩阵对应变换的作用下得到的点为B(2,2),求矩阵.
已知数列中.为实常数. (Ⅰ)若,求数列的通项公式; (Ⅱ)若.①是否存在常数求出的值,若不存在,请说明理由; ②设 .证明:n≥2时, .
已知函数. (Ⅰ)若不等式的解集为,,求的取值范围; (Ⅱ)若为整数,,且函数在上恰有一个零点,求的值; (Ⅲ)在(Ⅱ)的条件下,若函数对任意的x∈,有恒成立,求实数的最小值.