设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明:直线AC经过原点O.
已知集合,(1)若;(2)若,求实数的取值范围.
已知函数和函数,(1)证明:只要,无论b取何值,函数在定义域内不可能总为增函数;(2)在同一函数图象上任意取不同两点,线段AB的中点为,记直线AB的斜率为,①对于函数,求证:;②对于函数,是否具有与①同样的性质?证明你的结论.
已知是椭圆C:与圆F:的一个交点,且圆心F是椭圆的一个焦点,(1)求椭圆C的方程;(2)过F的直线交圆与P、Q两点,连AP、AQ分别交椭圆与M、N点,试问直线MN是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.
如图四棱锥,底面四边形ABCD满足条件,,侧面SAD垂直于底面ABCD,,(1)若SB上存在一点E,使得平面SAD,求的值;(2)求此四棱锥体积的最大值;(3)当体积最大时,求二面角A-SC-B大小的余弦值.
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2 a3a4 a5 a6a7 a8 a9 a10……记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1="1." Sn为数列{bn}的前n项和,且满足=1(n≥2).(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.