已知:等差数列{}中,=14,前10项和.(Ⅰ)求;(Ⅱ)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
设其中,曲线在点处的切线垂直于轴. (Ⅰ) 求的值; (Ⅱ) 求函数的极值.
的内角、、的对边分别为、、,已知,求。
已知数列{an}的前n项和,且Sn的最大值为8. (1)确定常数k,求an; (2)求数列的前n项和Tn。
已知函数。 (1)求的定义域及最小正周期; (2)求的单调递增区间。
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).