.(本题满分12分) 如图,四棱锥的底面是正方形,侧面是等腰三角形且垂直于底面,,,、分别是、的中点。(1)求证:;(2)求二面角的大小。
在三棱柱中侧棱垂直于底面,,,,且三棱柱的体积为3,则三棱柱的外接球的表面积为( )
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是(t是参数)(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.
如图,圆与圆交于两点,以为切点作两圆的切线分别交圆和圆于两点,延长交圆于点,延长交圆于点.已知. (1)求的长; (2)求.
已知函数(其中是自然对数的底数),,.(1)记函数,且,求的单调增区间;(2)若对任意,,均有成立,求实数的取值范围.
(本小题满分12分)已知抛物线,圆.(1)在抛物线上取点,的圆周上取一点,求的最小值;(2)设为抛物线上的动点,过作圆的两条切线,交抛物线于、点,求中点的横坐标的取值范围.